

Haus-/Übergabetechnik Technische Information

Wärmeverluste minimieren

Pufferspeicher: modernes Design - funktional und effizient

www.enerpipe.de

INHALTSVERZEICHNIS

Thema	Seite
Einleitung	3
Pufferübergabeeinheit	
Isolierung	5
Pufferspeichersysteme	6
Regelung	8
Planung	12
Datenblatt	18
Trinkwasseraufbereitung	19
Solarpufferstation	22
Übergabestationen	23
Druckprüfprotokoll	24
Druck- und Dichtigkeit	25
Erhebungsbogen	26
Inbetriebnahmeprotokoll	28
Normen und Richtlinien	29
Rechtliche Hinweise und Sicherheitsinformationen	30

Alle Rechte vorbehalten. Dieses Dokument wird von der ENERPIPE GmbH zur Verfügung gestellt.

Die ENERPIPE GmbH behält sich jederzeit das Recht auf Überarbeitung und Änderung des Dokumentes vor, ohne dabei verpflichtet zu sein, die vorgenommenen Änderungen anzukündigen oder zu melden.

EINLEITUNG

Um das Know-How jahrelanger Erfahrung in der Übergabetechnik zu bündeln, wurde speziell für dezentrale Wärmespeichernetze der ENERPIPE Nahwärmespeicher entwickelt, der durch höchste Effizienz dauerhaft wirtschaftliche Vorteile gewährleistet. Das edle Design verbindet Energieeffizienz und Funktionalität in moderner Optik. Dank des Energielabels B weisen alle unsere Speicher ein höchstes Maß an Dämmeigenschaften auf und sichern Ihnen dadurch Jahr für Jahr ein Plus an Wärme. Zur Auswahl stehen sechs Typen, die für unterschiedlichste Anwendungsfelder und Anforderungen optimiert wurden.

Alle Typen können mit einer Frischwasserstation oder wahlweise mit einem innenliegenden Hygienewendel aus Edelstahlwellrohr ausgestattet werden. Damit kann eine hygienische Trinkwassererwärmung gewährleistet werden.

Der Vorteil von Wärmenetzen mit dezentralen Nahwärmespeichern liegt in einem geringeren Wärmeverlust. Mittel eines dezentralen Wärmespeicherkonzepts inklusive intelligenter Ladesystematik können Anschlussleistung, Netzspitzen, Betriebszeiten und somit Wärmeverluste reduziert werden.

Die ENERPIPE Nahwärmespeicher sind die ideale Ergänzung zu Ihrem Wärmenetz und sparen dabei zusätzlich Energie ein.

Abb. 1: Installiertes Pufferspeichersystem

PUFFERÜBERGABEEINHEIT TECHNISCHE BESCHREIBUNG

Die ENERPIPE Pufferübergabeeinheit besticht durch Ihr modernes Design. Die vollverschweißte Verrohrung ist in einer EPP Dämmung verbaut. Alle eingebauten Komponenten sind mit der Regelungstechnik verdrahtet. Die Übergabeeinheit wird nach den gängigen Normen produziert (siehe S. 29).

Abb. 2: Übergabeeinheit

EIGENSCHAFTEN DES EPP MIT EINER DICHTE VON 60G/L

- > EPP ist ein Partikelschaum mit einem Schüttgewicht von 60g/l
- > Wärmeleitfähigkeit: 0,039 W/mK
- > Temperaturbeständigkeit: 85°C
- > 100% recyclingfähig

Abb. 3: Ausführung ZL

ÜBERGABEEINHEIT FÜR EIN WÄRME-**NETZ MIT ZENTRALER NETZPUMPE IM HEIZHAUS**

- > Schmutzfänger im Primärkreislauf
- > 3-Wegeumschaltkugelhahn gibt den Weg durch den Puffer erst frei, wenn die definierte primäre Vorlauftemperatur erreicht wird
- > Volumenstromregler für den hydraulischen Abgleich im Wärmenetz
- > Ultraschall-Wärmemengenzähler mit Beruhigungsstrecke
- > Schaltkasten mit Regelung

Abb. 4: Ausführung DL

ÜBERGABEEINHEIT FÜR EIN WÄRMENETZ MIT DEZENTRALER **NETZPUMPE IN DER EINHEIT**

- > Schmutzfänger im Primärkreislauf
- > 3-Wegeumschaltkugelhahn gibt den Weg durch den Puffer erst frei, wenn die definierte primäre Vorlauftemperatur erreicht wird
- > Versorgungspumpe der Übergabeeinheit mit dem nötigen Volumenstrom, ausgelegt nach dem Netzwiederstand
- > Ultraschall-Wärmemengenzähler mit Beruhigungsstrecke
- > Volumenstrombegrenzer zum Drosseln des maximalen Volumenstroms für den hydraulischen Abgleich
- > Schaltkasten mit Regelung

ISOLIERUNG

TECHNISCHE BESCHREIBUNG

Die ENERPIPE Nahwärmespeicherisolierung ist im Gegensatz zu anderen Modellen mit einem festen EPS-Graphit-Kern ausgestattet. Das Vlies an der Innenseite verhindert eine Luft-Zirkulation.

Diese Eigenschaften kombiniert mit einer hohen Passgenauigkeit macht diese zu einer deutlich effizienteren Isolierung gegenüber vergleichbaren Produkten.

PP Oberfläche

Vlies 3

Reißverschluss 4

ENERGIEKLASSEN

Die ENERPIPE Nahwärmespeicherisolierung erzielt Klasse B, während Standardisolierungen Werte zwischen E und C erreichen.

Standardisolierungen B C D E F G

Abb. 6: Energieklassen

WÄRMEDÄMM-EIGENSCHAFTEN

Die Wärmeleitfähigkeit von expandiertem Polystyrol mit Graphit-Nanopartikeln ist niedriger als 0,032 W/mK, während Standard-Isolierungen wie Polyesterfaservlies und PU-Weichschaum einen Wert von ca. 0,040 W/mK erreichen.

WÄRMEVERLUSTE

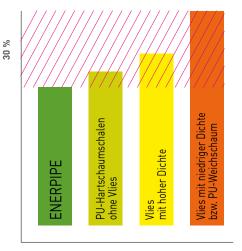
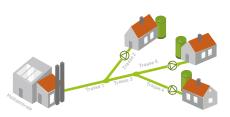



Abb. 7: Vergleich Dämmeigenschaften

Die ENERPIPE Nahwärmespeicherisolierung hat bis zu 30% niedrigere Wärmeverluste verglichen mit herkömmlichen Isolierungen!

PUFFERSPEICHERSYSTEME

DEZENTRALE LADUNG

Diese Nahwärmepufferspeicher werden in Wärmenetze ohne eine zentralen Netzpumpe eingesetzt. Jeder Puffer verfügt über eine eingebaute Ladepumpe, die nur bei Bedarf arbeitet. Die Stromkosten trägt der Abnehmer.

Abb. 8: Dezentrale Ladung

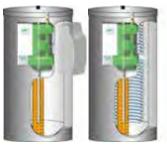


Abb. 9: SP-DL (FRIWA)

Abb. 10: SP-DL-H

SCHICHTSPEICHER SP-DLISP-DL-H

GEEIGNET FÜR EIN NEBENGEBÄUDE

- > Keine Systemtrennung, dadurch verkürzte Pufferladezeiten
- > Keine Systemtrennung und damit Heizwasservermischung
- > Drehzahlgeregelte Pufferladepumpe/Zubringerpumpe zur sauberen Schichtung
- > 3-Wegeumschaltkugelhahn zur Vorlauffreigabe

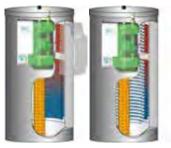


Abb. 11: HP-DL (FRIWA)

Abb. 12: HP-DL-H

HOCHLEISTUNGSSPEICHER HP-DL|HP-DL-H

GEEIGNET FÜR ZWEI BIS FÜNF GEBÄUDE

- Hochleistungswärmetauscher gewährleistet eine effektive Wärmeverteilung
- Systemtrennung mit robustem Heizwendelwärmetauscher und damit keine Heizwasservermischung
- > Drehzahlgeregelte Pufferladepumpe/Zubringerpumpe zur sauberen Schichtung
- > 3-Wegeumschaltkugelhahn zur Vorlauffreigabe

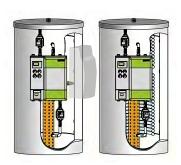


Abb. 13: ÜP-DL (FRIWA)

Abb. 14: ÜP-DL-H

ÜBERGABESPEICHER ÜP-DL|ÜP-DL-H

GEEIGNET FÜR ZWEI BIS FÜNF GEBÄUDE

- > Optimaler Einsatz bei Gebäuden mit hohem Wärmebedarf
- > Systemtrennung mit Plattenwärmetauscher und damit keine Heizwasservermischung
- > Hohe Leistung durch Plattenwärmetauscher
- Drehzahlgeregelte Pufferladepumpe/Zubringerpumpe zur sauberen Schichtung

PUFFERSPEICHERSYSTEME

ZENTRALE LADUNG

Diese Nahwärmepufferspeicher werden in Wärmenetze mit einer zentralen Netzpumpe eingesetzt. Die zentrale Netzpumpe versorgt alle Abnehmer und kann über die Heizhaussteuerung geregelt werden.

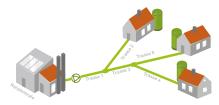


Abb. 15: Zentrale Ladung

SCHICHTSPEICHER SP-ZL|SP-ZL-H

GEEIGNET FÜR EIN GEBÄUDE

- > Keine Systemtrennung, dadurch verkürzte Pufferladezeiten
- > Keine Systemtrennung und damit Heizungswasservermischung
- > Volumenstromregler zum Abgleich der Hydraulik im Netz
- > 3-Wegeumschaltkugelhahn zur Vorlauffreigabe

Abb. 16: SP-ZL (FRIWA)

HOCHLEISTUNGSSPEICHER HP-ZL|HP-ZL-H

GEEIGNET FÜR WÄRMENETZE

- > Hochleistungswärmetauscher gewährleistet eine effektive Wärmeverteilung
- > Systemtrennung mit robustem Heizwendelwärmetauscher und damit keine Heizungswasservermischung
- > Volumenstromregler zum Abgleich der Hydraulik im Netz
- > 3-Wegeumschaltkugelhahn zur Vorlauffreigabe

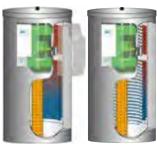


Abb. 18: HP-ZL (FRIWA)

Ahh 19-

ÜBERGABESPEICHER ÜP-ZL|ÜP-ZL-H

GEEIGNET FÜR WÄRMENETZE

- > Optimaler Einsatz bei Gebäuden mit hohem Wärmebedarf
- > Systemtrennung mit Plattenwärmetauscher und damit keine Heizungswasservermischung
- > Hohe Leistung durch Plattenwärmetauscher
- > Drehzahlgeregelte Pufferladepumpe zur sauberen Schichtung

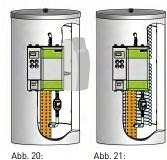


Abb. 20: ÜP-ZL (FRIWA)

Abb. 21: ÜP-ZL-H

Abkürzungen:}

SP: Schichtspeicher, HP: Hochleistungsspeicher, ÜP: Übergabespeicher,

ZL: Zentrale Ladung, DL: Dezentrale Ladung, H: Hygienewendel, FRIWA: Frischwasser

REGELUNG EPC

Die witterungsgeführte ENERPIPE Regelungstechnik steuert die komplette Beladung des Puffers und die Wärmeverteilung im Gebäude. Das EPC-Bedienteil ist übersichtlich und leicht zu bedienen. Im Schaltschrank sind alle Platinen vorverdrahtet. Es ist immer ein Heizkreis anschließbar. Die Regelung kann mit zusätzlichen Heizkreismodulen oder mit einer Visualisierung etc. modular erweitert werden.

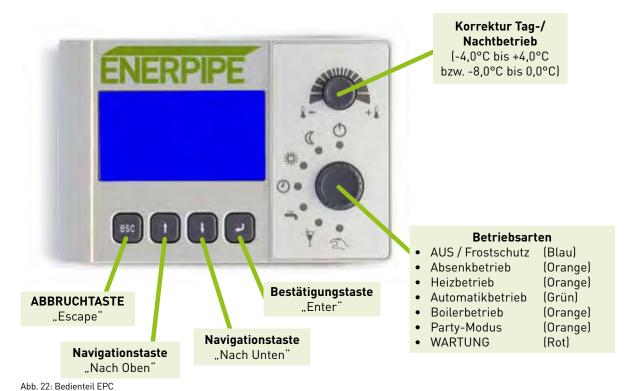


Abb. 23: Schaltschrank für die Übergabetechnik

- Bedienteil
- 2 Basisplatine
- 3 Heizkreismodul/Erweiterungsmodul
- 4 Kommunikationsplatine
- 5 Sicherung

REGELUNG PUFFERMANAGEMENT _

PUFFERMANAGEMENT FÜR SOMMERSCHALTUNG

Durch den Einsatz des ENERPIPE Puffermanagements werden die Abstrahlverluste im Wärmenetz durch eine Sommerschaltung zusätzlich reduziert. Das System wird anschlussfertig und vorkonfektioniert geliefert.

Zur Funktion des gesamten Systems müssen die dezentralen Pufferspeicher mit einem **ENERPIPE** Regler EPC in Verbindung mit dem Zusatzmodul Puffermanagement Anschlussnehmer (PMA) oder einer Kommunikationseinheit ausgestattet sein. Weitere Funktionssicherheit wird durch die Verwendung der Zusatzkomponenten Datendose mit Erdungsfahnen sowie die geschirmten Kabel gewährleistet. Das Datenkabel kann ebenfalls für die Zählerauslesetechnik (WMZA) oder WMZA-PRO (mit Datenlogger) verwendet werden.

Das Regelgerät Puffermanagement (PM) oder mit Mischerregelung (PMC) wird im Heizhaus installiert. Bei "dezentraler Pufferladung" (Pufferspeichertypen DL) kann das Regelgerät PM auch in einem der angeschlossenen Gebäude verbaut sein. Zudem können über das Regelgerät E-**CONTROL** alle vorgenannten Funktionen erfüllt werden zzgl. Visualisierung aller Abnehmer mit Datenlogging zur Rückverfolgung. Die Regelgeräte sind im Stahlblech-Schaltschrank anschlussfertig montiert.

VORTFILF:

- > Das Wärmenetz ist nur in Betrieb, wenn eine Wärmeanforderung besteht.
- Alle im Netz befindlichen Pufferspeicher werden bei einer Wärmeanforderung abgefragt, ob diese ganz geladen sind. Sollte dies nicht der Fall sein, laden diese Pufferspeicher gleichzeitig voll.
- > Eine Zwangsladung durch Taster am Schaltschrank ist möglich.
- > Am Schaltschrank befindet sich ein Wahlschalter für den Hand- oder Automatikbetrieb. Kontrollleuchten geben Sicherheit im Betrieb.

ZENTRALES PUFFERMANAGEMENT SOMMERSCHALTUNG PM/PMC

Abb. 24: 1. Nahwärmepufferspeicher fordert Wärme an

Abb. 25: 2. Zentrale Pumpe läuft, Pufferspeicher wird geladen; weitere Pufferspeicher werden auf Bedarf abgefragt.

Abb. 26: 3. Zentrale Pumpe läuft, alle Pufferspeicher mit Bedarf werden geladen; dann Ruhezustand.

DEZENTRALES PUFFERMANAGEMENT SOMMERSCHALTUNG PM

Abb.27: 1. Nahwärmepufferspeicher fordert Wärme an.

Âbb. 28: 2. Dezentrale Pumpe läuft, Pufferspeicher wird geladen; weitere Pufferspeicher werden auf Bedarf abgefragt.

Abb.: 29 3. Dezentrale Pumpe läuft, alle Pufferspeicher mit Bedarf werden geladen; dann Ruhezustand.

- **W**ärmeanforderung
- Pumpe läuft
- Redarfsabfrage im Netz
- **W** Wird geladen
- 🎇 Ausreichend geladen
- Wärmenetz
- Wärmelieferung

 Information

REGELUNG

PUMPENBEDARFSSCHALTUNG

PMC

Abb. 30: Puffermanagement mit Mischerregelung

PM

Abb. 31: Puffermanagement

ZPC

Abb. 32: Pumpenbedarfsschaltung mit Mischerregelung

Abb. 33: Pumpenbedarfsschaltung

ZENTRALE PUMPENBEDARFSSCHALTUNG

Durch den Einsatz der einfachen zentralen Pumpenbedarfsschaltung (ZP) läuft die zentrale Pumpe nur bei Pufferanforderung. So kann Pumpenenergie eingespart und auch der Abstrahlverlust der Rohrleitungen vermindert werden. Das System zentrale Pumpenbedarfsschaltung Anschlussnehmer (ZPA) wird in der Station verbaut. ZP oder ZPC (mit Mischerregelung) werden im Heizhaus angeschlossen.

Zur Funktion des gesamten Systems müssen die dezentralen Pufferspeicher mit einem ENERPIPE Regler EPC in Verbindung mit dem Zusatzmodul Zentrale Pumpenbedarfsschaltung Anschlussnehmer (ZPA) ausgestattet sein.

Weitere Funktionssicherheit wird durch die Verwendung der Zusatzkomponenten Datendose mit Erdungsfahnen sowie die geschirmten Kabel gewährleistet. Das Datenkabel 4 x 2 x 0,8mm² kann ebenfalls für die Zähler-auslesetechnik WMZA oder WMZA-PRO (mit Datenlogger) verwendet werden.

VORTFILF:

- > Pumpe läuft nur bei Anforderung eines Verbrauchers und somit nicht gegen ein geschlossenes Ventil.
- > Wärmenetz ist außer Betrieb, wenn keine Wärmeanforderung besteht.

ZENTRALE PUMPENBEDARFSSCHALTUNG ZP/ZPC

Abb. 34: 1. Nahwärmepufferspeicher fordert Wärme an.

Abb. 35: 2. Zentrale Pumpe läuft, Nahwärmepufferspeicher wird geladen;

DEZENTRALE PUMPFNBFDARFSSCHALTUNG

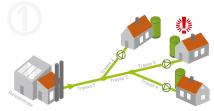
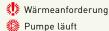



Abb. 36: 1. Nahwärmepufferspeicher fordert Wärme an

Abb. 37: 2. Dezentrale Pumpe läuft, Nahwärmepufferspeicher wird geladen; dann Ruhezustand.

REGELUNG E-CONTROL _

Die ENERPIPE E-Control unterstützt Sie beim Betrieb Ihres Wärmenetzes und spart bares Geld. Selbst in kleinen Heizzentralen senkt die richtige Regelung deutlich die Betriebskosten . Dabei werden die Temperaturen bedarfsgerecht geregelt, die Drehzahlen der Pumpen gesenkt und die Heizenergie bedarfsgerecht verteilt.

IMMER ALLES IM GRIFF...

Wärme ist ein Grundbedürfnis – behalten Sie daher mit der E-CONTROL den Überblick über Ihr Wärmenetz. Sie können ortsunabhängig wichtige Parameter einsehen und bei Bedarf anpassen. Somit können Sie sich den Weg in den Heizraum oder zu einem Wärmeabnehmer oft sparen.

... UND IMMER ALLE IM BLICK

Betrachten Sie in einem ruhigen Moment Ihr Wärmenetz und erkennen Sie versteckte Optimierungspotenziale. Dank dem integrierten Datenlogger können Sie so Ihr Wärmenetz Schritt für Schritt weiter optimieren und bares Geld einsparen.

Abb. 38: E-CONTROL mit Bildschirmanzeige Heizhaus

PUFFERMANAGEMENT

Integrieren Sie das bewährte ENERPIPE Puffermanagement in Ihr E-CONTROL und verringern Sie dadurch Ihre Wärmeverluste – vor allem in den Sommermonaten. Laden Sie gezielt die dezentralen Nahwärmespeicher und optimieren Sie die Betriebszeiten für einen geringen Wärmeverlust.

STEHEN SIE NIE VOR VERSCHLOSSENEN TÜREN

Vereinfachen Sie Ihre regelmäßige Wärmemengenabrechnung, indem Sie sich die zeitaufwändige Zählerablesung mit vorheriger Terminabsprache ersparen. Lesen Sie die Zähler jederzeit und ganz bequem von Ihrem Sofa aus ab.

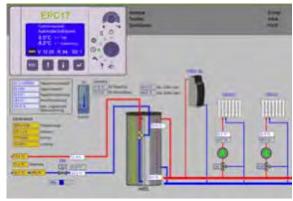
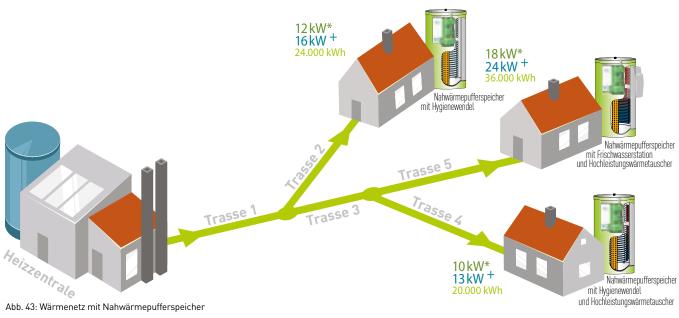


Abb. 39: Bildschirmanzeige Abnehmer

DEZENTRALES PUFFERMANAGEMENT SOMMERSCHALTUNG PM E-CONTROL

Abb. 40: 1. Nahwärmepufferspeicher fordert Wärme an.

Abb. 41: 2. Dezentrale Pumpe läuft, Pufferspeicher wird geladen; weitere Pufferspeicher werden auf Bedarf abgefragt.


Abb. 42: 3. Dezentrale Pumpe läuft, alle Pufferspeicher mit Bedarf werden geladen; dann Ruhezustand.

PLANUNG **PROJEKTIERUNG**

ROHRDIMENSION UND **PUFFERSPEICHERSYSTEM**

Folgendes Beispiel zeigt die Vorteile eines dezentralen Pufferspeichersystems gegenüber einer Übergabestation mit zentralem Pufferspeichersystem auf. Durch Erhöhung der Volllaststundenzahl wird die Dimension der Rohre, beim Einsatz

von dezentralen Pufferspeichern bei gleichem Druckverlust, erheblich geringer. Der Abstrahlverlust kann somit um bis zu 40 % reduziert werden (siehe Beispielrechnung).

ZENTRALER PUFFERSPEICHER IN DER HEIZZENTRALE

		Trasse 1	Trasse 2	Trasse 3	Trasse 4	Trasse 5	Gesamtwärmeverlust
	Trassenlänge	50 m	21 m	33 m	24 m	19 m	15.135 kWh #
ſ	Dimension	40+40/126	32+32/111	40+40/126	32+32/111	32+32/111	pro Jahr

Betriebstemperaturen: Sommer 70/55 °C; Winter 75/55 °C Druckverlust Δp 0,70 bar bei 1500 Vollbetriebsstunden

Tab. 1: Auslegung ohne Pufferspeicher

DEZENTRALER NAHWÄRMEPUFFERSPEICHER IN DEN GEBÄUDEN MIT PUFFERMANAGEMENT

	Trasse 1	Trasse 2	Trasse 3	Trasse 4	Trasse 5	Abstrahlverluste
Trassenlänge	50 m	21 m	33 m	24 m	19 m	9.105 kWh [#]
Dimension	32+32/111	25+25/111	32+32/111	25+25/111	32+32/111	pro Jahr

Betriebstemperaturen: Sommer 70/35 °C; Winter 75/50 °C Sommerladung: 1x pro Tag + Frischwasserstation oder Hygienewendel

Druckverlust Δp 0,70 bar bei 2000 Vollbetriebsstunden

Tab. 2: Auslegung mit Pufferspeicher

*mit Pufferspeicher: 2000–2200 Vollbetriebsstunden *ohne Pufferspeicher: 1500–1700 Vollbetriebsstunden

*Der Gesamtwärmeverlust ist im Einzelfall zu betrachten.

BEMESSUNG DER ANSCHLUSSLEISTUNG

Es gibt dazu unterschiedliche Berechnungsformen. Zum einen kann der Energiebedarfsnachweis verwendet werden, zum anderen der tatsächliche Verbrauch der letzten 3 Jahre oder der jeweilige Gebäudetyp nach Bauart, Baujahr etc. Auf den Seiten 26 und 27 finden Sie den Erhebungsbogen als Grundlage für die Bedarfsermittlung von Bestandsgebäuden.

Nach der Auswertung der Erhebungsbögen wird unter Berücksichtigung einer Volllaststundenzahl, die bei Wohngebäuden im Bestand zwischen 1500 und 2200 Stunden liegen kann, die Anschlussleistung ermittelt.

Bei Verwendung eines dezentralen Pufferspeichersystems ist die Volllaststundenzahl höher und damit die Anschlussleistung geringer als bei Wärmenetzen mit herkömmlichen Übergabestationen. Dies liegt daran, dass der Pufferspeicher die Wärmespitzen im Gebäude abfängt. Siehe Abb. 44.

LADE- UND ENTLADEVERHALTEN PUFFERSPFICHER

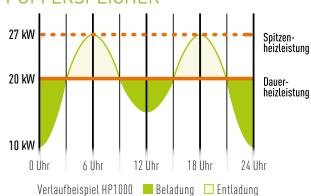


Abb. 44: Ladeverhalten

Zur Berechnung wurden folgende Temperaturen verwendet:

	Variante 1 [ºC]	Variante 2 [ºC]	Variante 3 [°C]
Wärmenetz	80/60	75/55	70/50
Gebäude	55/70	50/65	45/60

Tab. 3: Temperaturwerte für das Ladeverhalten

Die Modelltypen garantieren passgenaue Auslegung in folgenden Leistungsbereichen:

AUSLEGUNGSHILFE

Beispiel 1: Primär VL: 80°C, RL 60°C	Schichts SP ode	speicher er SP-H	Hochleistur HP ode	ngsspeicher er HP-H		espeicher er ÜP-H
Sekundär VL: 70°C, RL 55° C	Spitzenheizleistung	Dauerheizleistung	Spitzenheizleistung	Dauerheizleistung	Spitzenheizleistung	Dauerheizleistung
Тур 600	45 kW	40 kW	15 kW	12 kW	45 kW	40 kW
Тур 800	50 kW	40 kW	19 kW	14 kW	50 kW	40 kW
Typ 1000	54 kW	40 kW	27 kW	20 kW	54 kW	40 kW

Tab. 4: Auslegung Beispiel 1

	eispiel 2: imär VL: 80°C, RL 50°C	Schichts SP ode	speicher er SP-H	Hochleistur HP ode	ngsspeicher er HP-H	Übergabe ÜP ode	espeicher er ÜP-H
Se	kundär VL: 70°C, RL 45° C	Spitzenheizleistung	Dauerheizleistung	Spitzenheizleistung	Dauerheizleistung	Spitzenheizleistung	Dauerheizleistung
I	ур 600	68kW	60 kW	16 kW	13 kW	68kW	60 kW
T	ур 800	75 kW	60 kW	20 kW	15 kW	75 kW	60 kW
T	ур 1000	81 kW	60 kW	30 kW	22 kW	81 kW	60 kW

Tab. 5 : Auslegung Beispiel 2

Spitzenheizleistung: Die durch den Pufferspeicher im Gebäude zur Verfügung stehende Spitzenwärmeleistung

Dauerheizleistung: Die für die Heizleistung nötige Ladeleistung vom Wärmenetz

Auslegungshilfe: Techn. Änderungen vorbehalten. Angegebene Werte sind Grundlage für die erste Auslegung und müssen planerisch durch ein Ingenieurbüro bestätigt werden.

PLANUNG

AUFSTELLABMESSUNGEN

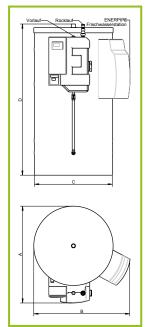


Abb. 45: SP-DL I HP-DL

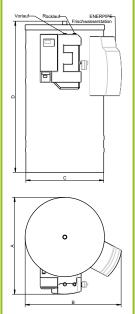


Abb. 46: SP-ZL I HP-ZL

□

SP-DL | HP-DL SP-ZL | HP-ZL

- > Primär Vorlauf/Rücklauf Außengewinde 5/4"
- > Schmutzfänger im Primärkreislauf
- > 3-Wegeumschaltkugelhahn mit elektrischem Stellantrieb
- > ENERPIPE Regelung EPC
- > Pufferladepumpe bzw. Volumenstromregler mit elektrischem Stellantrieb
- > Wärmemengenzähler oder Passstück vormontiert
- > Verdrahtung und Isolation der Verrohrung

	Größe	Tiefe (A)	Breite (B)	Durchmesser (C)	Höhe (D)
OD DI	600 l	1186	1175	950	1745
SP-DL HP-DL	800 l	1306	1295	1040	1735
III DE	1000 l	1306	1295	1040	2090
00.71	600 l	1186	1175	950	1745
SP-ZL HP-ZL	800 l	1306	1295	1040	1735
111 - 21	1000 l	1306	1295	1040	2090

Tab. 6: Aufstellabmessungen

ÜP-DL I ÜP-ZL

- > Primär Vorlauf/Rücklauf Außengewinde 5/4"
- > Schmutzfänger im Primär- und Sekundärkreislauf
- > Plattenwärmetauscher
- > ENERPIPE Regelung EPC
- > Netzpumpe (ÜP-DL)
- > Pufferladepumpe und Volumenstromregler mit elektrischem Stellantrieb (ÜP-ZL)
- > Wärmemengenzähler oder Passstück vormontiert
- > Verdrahtung und Isolation der Verrohrung

	Größe	Tiefe (A)	Breite (B)	Durchmesser (C)	Höhe (D)
ün nı	600 l	1270	1175	950	1745
ÜP-DL	800 l	1390	1295	1040	1735
	1000 l	1390	1295	1040	2090
	600 l	1270	1175	950	1745
ÜP-ZL	800 l	1390	1295	1040	1735
	1000 l	1390	1295	1040	2090

Tab. 7: Aufstellabmessungen

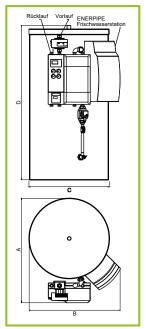


Abb. 47: ÜP-DL

Abb. 48: ÜP-ZL

SP-DL-H | HP-DL-H SP-ZL-H | HP-ZL-H

- Innenliegendes Edelstahlwellrohr zur hygienischen Trinkwassererwärmung
- > Primär Vorlauf/Rücklauf Außengewinde 5/4"
- > Schmutzfänger im Primärkreislauf
- > 3-Wegeumschaltkugelhahn mit elektrischem Stellantrieb
- > ENERPIPE Regelung EPC
- > Pufferladepumpe bzw. Volumenstromregler mit elektrischem Stellantrieb
- > Wärmemengenzähler oder Passstück vormontiert
- > Verdrahtung und Isolation der Verrohrung

	Größe	Tiefe (A)	Breite (B)	Höhe (C)
0D DI II	600 l	1186	950	1745
SP-DL-H HP-DL-H	800 l	1306	1040	1735
III DE II	1000 l	1306	1040	2090
00.71.11	600 l	1186	950	1745
SP-ZL-H HP-ZL-H	800 l	1306	1040	1735
111 21 11	1000 l	1306	1040	2090

Tab. 8: Aufstellabmessungen

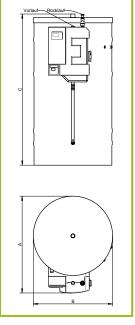


Abb. 49: SP-DL-H I HP-DL-H

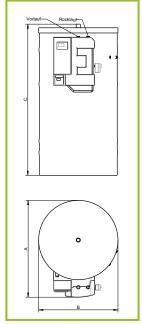


Abb. 50: SP-ZL-H I HP-ZL-H

ÜP-DL-H | ÜP-ZL-H

- > Innenliegendes Edelstahlwellrohr zur hygienischen Trinkwassererwärmung
- > Primär Vorlauf/Rücklauf Außengewinde 5/4"
- > Schmutzfänger im Primär- und Sekundärkreislauf
- > Plattenwärmetauscher
- > ENERPIPE Regelung EPC
- > Netzpumpe (ÜP-DL-H)
- > Pufferladepumpe und Volumenstromregler mit elektrischem Stellantrieb (ÜP-ZL-H)
- > Wärmemengenzähler oder Passstück vormontiert
- > Verdrahtung und Isolation der Verrohrung

	Größe	Tiefe (A)	Breite (B)	Höhe (C)
	600 l	1270	950	1745
ÜP-DL-H	800 l	1390	1040	1735
	1000 l	1390	1040	2090
	600 l	1270	950	1745
ÜP-ZL-H	ا 008	1390	1040	1735
	1000 l	1390	1040	2090

Tab. 9: Aufstellabmessungen

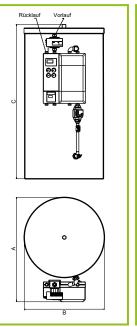


Abb. 51: ÜP-DL-H

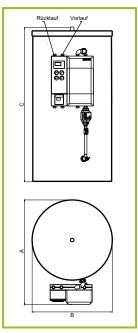


Abb. 52: ÜP-ZL-H

PLANUNG

MASSE NAHWÄRMEPUFFERSPEICHER

Zur hydraulischen Einbindung der Pufferspeichersysteme stellt ENERPIPE spezielle Hydraulikschemen zur Verfügung. Hierbei sollte darauf geachtet werden, dass Speicher und Frischwasserstationen nur in eine geschlossene Heizungsanlage eingesetzt werden dürfen. Zudem muss das im Heizungssystem verwendete Wasser die Anforderungen der VDI 2035 Teil 1 und 2 erfüllen.

Darüber hinaus muss bei der Ausführung der Sicherheits- und Ausdehnungseinrichtungen für geschlossene Heizanlagen darauf geachtet werden, dass diese gemäß den geltenden Normen und Richtlinien (DIN EN 12828, DIN 4753 und DIN EN 12897) erfolgt. Wichtig ist in diesem Zusammenhang auch, dass das Volumen des Systemspeichers und der Wärmetauscher bei der Auslegung des Ausdehnungsgefässes berücksichtigt wird.

Das im System befindliche Wasser muss sich ausdehnen können, um zu verhindern, dass es den Wärmetauscher bzw. Speicher beschädigt. Aus diesem Grund sollte man davon absehen, beide Anschlüsse mit einem Absperrorgan auszustatten. Sollte es dennoch erforderlich sein sowohl den Speicher als auch den Wärmetauscher mit Absperrorganen zu versehen, müssen unbedingt Sicherheitsventile oder Ausdehnungsgefäße zwischen Absperreinrichtung und Speicher montiert werden. Zudem muss das aus dem Sicherheitsventil austretende Wasser gefahrlos abgeleitet werden können.

Legende:

10

11

12

Heizung Vorlauf oder Pufferladung Vorlauf (extern) 1½" IG **Heizung Vorlauf** oder Rücklauf Brauchwasser oder elektrisches Heizelement 11/2" IG Heizung Rücklauf Pufferladung Rücklauf (extern) 11/2" IG Fühler Anschlüsse bzw. Enschweißhülsen 1/2" IG Frischwasserstation Vorlauf 1" AG Frischwasserstation Rücklauf 1" AG 8 Schichtrohr 9 Vorlauf Nahwärme 11/4" AG

11/2" AG

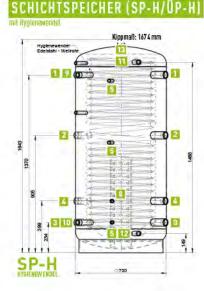
1" IG

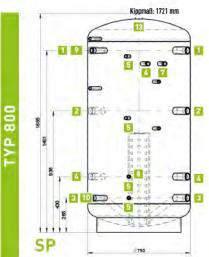
1" IG

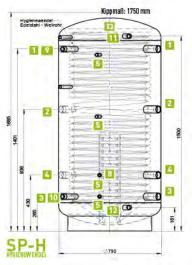
11/4 IG

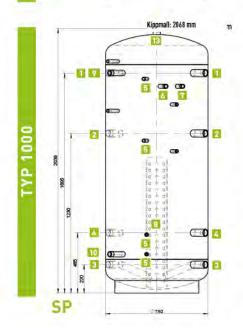
¹Heizung Vorlauf bei Hygienspeicher bzw. mit Frischwasserstation. ²Brauchwasser bei Boiler mit geringer Leistung.

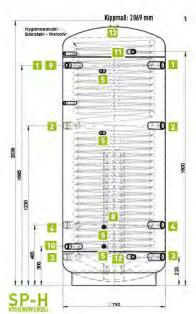
Rücklauf Nahwärme

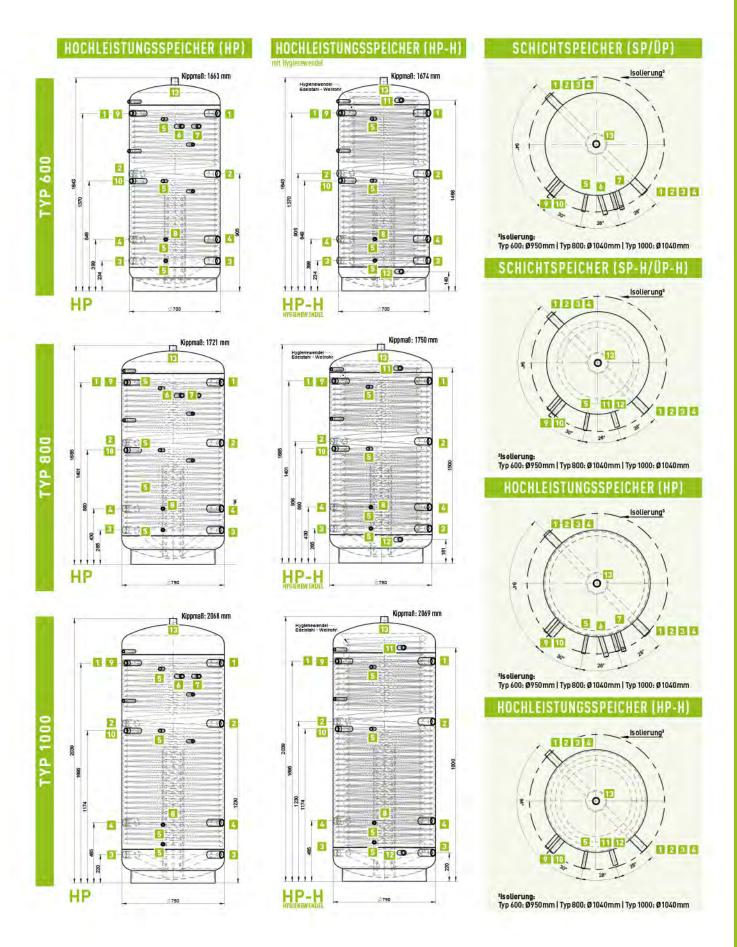

Entlüftung


Vorlauf Brauchwasser


Rücklauf Brauchwasser


SCHICHTSPEICHER (SP/UP)





DATENBLATT

PUFFERSPEICHER VON ENERPIPE

	Einheit	ÜP600 mit Friwa	ÜP600	SP600 mit Friwa	H-009dS	HP600 mit Friwa	H-009H	ÜP800 mit Friwa	ÜP800	SP800 mit Friwa	N-0084S	HP800 mit Friwa	Н-800-Н	ÜP1000 mit Friwa	ÜP1000	SP1000 mit Friwa	SP1000-H	HP1000 mit Friwa	HP1000-H
Bruttoinhalt	_	571	571	571	929	571	999	732	732	732	760	732	760	926	925	925	006	926	006
ø ohne Isolierung	mm	700	700	700	700	700	700	790	790	790	790	790	790	790	790	790	790	790	790
Höhe ohne Isolierung	mm	1643	1643	1643	1643	1643	1643	1685	1685	1685	1685	1685	1685	2039	2039	2039	2039	2039	2039
Kippmaß	mm	1663	1663	1663	1674	1663	1674	1721	1721	1721	1750	1721	1750	2068	2068	8907	5069	2068	5069
Betriebsdruck Heizung	bar	က	33	ec.	33	33	ec	က	3	က	33	33	65	65	33	e5	က	es.	33
Betriebsdruck Hygienewendel	bar	_	_	_	9	_	9	_	_	_	9	_	9	_	_	_	9	_	9
Betriebsdruck Heizwendel	bar	_	_	_	_	10	2	_	_	_	_	=	2	_	_	_	_	2	10
max. Betriebstemperatur	J,	96	96	96	96	96	96	96	96	92	9.6	96	96	96	96	96	96	96	95
Gewicht vom Puffer	kg	18'96	18,89	18'96	114,8	153,99	174,8	110,78	110,78	110,78	131,8	176,54	192,2	129,78	129,78	129,78	150,7	211,45	241,7
Isolierung								Neopor:	Neopor: 105 mm (0,032W/mK)	32W/mK] + VL	+ Vlies 20mm (0,038W/mK)	038W/mK)							
ø mit Isolierung	mm	950	950	950	950	950	950	1040	1040	1040	1040	1040	1040	1040	1040	1040	1040	1040	1040
Höhe mit Isolierung	шш	1745	1745	1745	1745	1745	1745	1735	1735	1735	1735	1735	1735	2090	2090	2090	2090	2090	2090
Gewicht der Isolierung	kg	19	19	19	19	19	19	20	20	70	20	70	70	71	17	17	71	21	21
ErP Klasse		В	В	8	В	В	B	В	B	8	8	8	8	8	8	8	В	8	8
ErP Wärmeverlust*	KWh/24h	1,9**	1,9**	1,9**	1,9**	1,9* *	1,9**	2,12**	2,12**	2,12**	2,12* *	2,12**	2,12**	2,3*	2,3*	2,3*	2,3*	2,3*	2,3*
Heizregister	m ²	_	/	1	/	4,2	4,2	/	/	/	/	8'7	8'7	/	-	/	/	0'9	0'9
Inhalt Heizregister	_	_	_	/	_	25,8	25,8	_	/	/	_	29,5	29,5	_	_	_	1	36,9	36,9
Druckverlust Heizregister	mbar	_	_	_	_	7.5	7.5	_	_	_	_	982	98	_	_	_	_	105	105
Heizfläche Edelstahlwellrohr	m ²	/	/	1	5,5	/	5,5	/	/	/	5,5	/	5,5	/	/	1	6,7	1	6,7
Inhalt Edelstahlwellrohr	1	/	/	1	30,0	/	30,0	/	/	/	30,0	/	30,0	/	/	/	36,3	1	36,3
Druckverlust Edelstahlwellrohr bei 1000 l/h	mbar	1	1	1	99	-	92	/	_	/	99	1	26	/		1	61	1	19
Druckverlust Edelstahlwellrohr bei 3000 l/h	mbar	-	/		508	/	508	/	1	/	208	/	508	1	/	/	295	/	552
Warmwasserdauerzapfmenge 10°C/45°C bei 72°C Netzvorlauf	l/min	22,6	_	13,3***	14,8	11,6	14,8	22.6	_	13,3***	16,0	12,4	16,0	22,6	_	19***	20.2	15,8	20,2
Heizleistung bei Dauerzapfleistung	ΚW	92'0	/	32,5***	36,1	28,6	36,1	92,0	/	32,5***	39,0	31,0	39,0	92'0	/	*****	49,3	39,2	49,3
Warmwasserzapfmenge 10°C/45°C bei 50°C Puffermitteltemperatur [Menge: 10 t/min; Nachladung: Nein]	1	359	1	329	279	359	279	097	1	460	388	097	388	581	1	581	242	581	545
Warmwasserzapfmenge 10°C/45°C bei 50°C Puffermitteltemperatur (Menge: 20 I/min; Nachladung: Nein)	1	343	/	343	196	343	196	440	1	440	305	055	305	929	1	556	441	556	441
Warmwasserzapfmenge 10°C/45°C bei 65°C Puffermitteltemperatur (Menge: 20 l/min; Nachladung: Nein)	_	897	_	897	417	897	417	009	_	009	514	009	514	758		758	730	758	730
Messung nach DIN EN 12897	*	** berechnete Werte	ete Wert	a	* *	Volumen	ıstrom au	*** Volumenstrom auf 700 l/h begrenzt	begrenzt		*	unlo/****	nenstrom	***Volumenstrom auf 10001/h begrenzt	l/h begre	nzt			

Tab. 10: Pufferspeicher Datenblatt

TRINKWASSERAUFBEREITUNG

ANWENDUNG

ENERPIPE Frischwasserstationen und Nahwärmespeicher mit Hygienewendel schützen das Lebensmittel Trinkwasser. Im Gegensatz zu Heizwasser sollte Trinkwasser nicht auf Vorrat gespeichert werden. Die Gefahr von Legionellen und anderen Krankheitskeimen kann somit ausgeschlossen werden.

HYGIENEPUFFER

Abb. 53: Hypienepuffer

FRISCHWASSER-STATIONEN

Abb. 54: FWS 30/35

Abb. 55: FWS 40

LEISTUNGSDATEN HYGIENEPUFFER

Der ENERPIPE Hygienepuffer dient zur Trinkwasserbereitung über ein groß dimensioniertes Edelstahlwellrohr. Das Kaltwasser fließt im unteren Bereich des Nahwärmepufferspeichers ein und erwärmt sich im Durchlaufprinzip. Dadurch tritt das erwärmte Trinkwasser im oberen Bereich des Nahwärmepufferspeichers, ohne zusätzliche Pumpenunterstützung, aus.

Die im Edelstahlwellrohr beinhaltete Wassermenge entspricht den hygienischen Anforderungen für Ein- oder Zweifamilienhäuser. Durch dieses Verfahren ist der untere Bereich des Nahwärmepufferspeichers auf einem niedrigen Temperaturniveau, so dass im Wärmenetz die Rücklauftemperatur niedrig gehalten werden kann.

LEISTUNGSDATEN FRISCHWASSERSTATION

Тур	FWS 30	FWS 35	FWS 40
Artikelnummer	100.511.300	100.511.299	100.511.298
*Zapfleistung (l/min)	1,5 - 30	1,5 - 35	1,5 - 40
Anschluss Heizung	1" AG	1" AG	1" AG
Anschluss Kalt- und Warmwasser	1" IG	1" IG	1" IG
Zirkulation	½" IG	½" IG	1⁄2" IG
Spülanschluss	1/2" IG	1∕2" IG	1⁄2" IG
Max. zul. Betriebstemperatur (°C)	95	95	95
Max. zul. Druck Brauchwasser (bar)	10	10	10
Max. zul. Druck Heizung (bar)	3	3	3
Breite x Höhe x Tiefe (mm)	400 x 600 x 302	400 x 600 x 302	400 x 600 x 302
Gewicht (kg)	19	19	20

Tab. 11: Leistungsdaten Frischwasserstation

*Zapfleistung ist abhängig von der Puffertemperatur und der Zapftemperatur (siehe Datenblatt Seite 18). Beispiel: 45°C Zapftemperatur und 10°C Kaltwassertemperatur bei 15K höherer Pufferwassertemperatur

ANSCHLUSSADAPTER FÜR EXTERNE ZIRKULATIONSPUMPE

Artikel-Nr.	Anschluss
100.511.356	3/4" IG

Tab. 12: Zubehör Anschlussadapter

TRINKWASSERAUFBEREITUNG

KASKADE

Auch für große Anwendungen die perfekte Lösung. Die Frischwasserstation FWS ist auch als Kaskadenlösung verfügbar. Bis zu 4 Stationen können parallel verschaltet werden und erreichen so eine Schüttleistung von bis zu 160 l/min. Im Vergleich zu herkömmlichen XL-Anlagen ist die Ausfallsicherheit gegeben, da mehrere Module zusammengeschaltet sind.

Besonderes Highlight: beim FWS TOWER (siehe Abb. 57) sind bereits alle Bauteile auf einer Unterkonstruktion steckerfertig vormontiert - Frischwasserstation, Verrohrung, Hygieneset, elektrische Verkabelung, Ventile, Regler und Kommunikationsmodul inklusive!

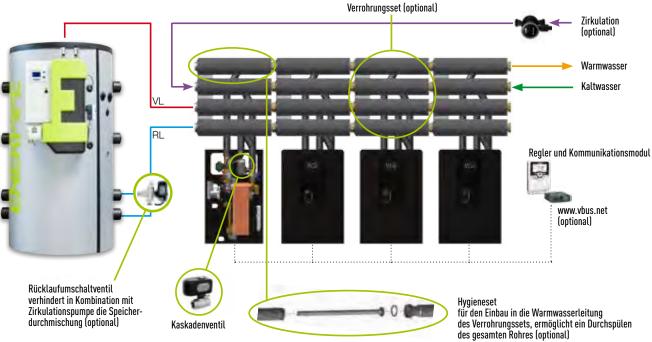


Abb. 56: Anschlussschema Kaskade

AU5	LEG	UNGS	IABI	ELLE

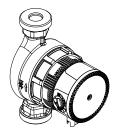
AUSEEUONUSTABEEEE	FWS 80 2er Kaskade	FWS 120 3er Kaskade	FWS 160 4er Kaskade
Artikelnummer	221100080	221100120	221100160
Zapfleistung (l/min)	1-80	1-120	1–160
MFH (Wohnungen)	20	25-40	50-70
Hotel (Betten)	20	30-50	60-120
Sportstätten (Duschen)	6	10-15	20

Tab. 13: Auslegungstabelle Kaskade

*Zapfleistung ist abhängig von der Puffertemperatur und der Zapftemperatur (siehe Datenblatt Seite 18). Beispiel: 45°C Zapftemperatur und 10°C Kaltwassertemperatur bei 15K höherer Pufferwassertemperatur

VORTEILE KASKADE:

- 4-fach Kaskade bis zu 160 l/min
- Laufzeitbilanzierung
- Thermische Desinfektion
- Kaskadenventile
- Wärmemengenzählung
- Hohe Ausfallssicherheit
- Zirkulationspumpe


- Zirkulationsregelung
- Rücklaufumschaltung
- Wartungsfreundlich
- Regelung Master / Slave
- Visualisierung über Internet
- Benachrichtigung per E-Mail im Fehlerfall

TRINKWASSERAUFBEREITUNG

ZUBEHÖR

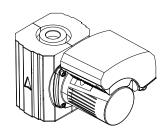
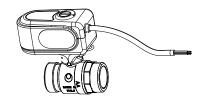
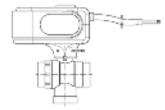


Abb. 58: Zirkulationspumpe 1,1 m


Abb. 59: Zirkulationspumpe 6 m


Abb. 60: Zirkulationspumpe 10 m

	Zirkulationspumpe 1,1 m für FWS	Zirkulationspumpe 6 m für Kaskade	Zirkulationspumpe 10 m für Kaskade
Artikelnummer	100511302	221100005	22110006
Nennspannung [V]	200-240	200-240	230
Frequenz [Hz]	50/60	50/60	50/60
Leistungsaufnahme [W]	7,5 (Uhr 1,5)	4-42	17-231
IP - Schutzart	IP 44	IP 44	IP 44
Isolationsklasse	155 (F)	155 (F)	155 (F)
Maximaler Anlagendruck [bar]	10	10	10
Zulässiger Temperaturbereich [°C]	-10 bis + 110	-10 bis + 85	-10 bis + 85
Anschlüsse [Zoll]	1/2 IG	1 1/2 AG	2 AG

Tab. 14: Technische Daten Zirkulationspumpen

TECHNISCHE DATEN

TECHNISCHE DATEN

Abb. 61: Kaskadenventil

Abb. 62: Rücklaufumschaltventil

	Kaskadenventil	Rücklaufumschaltventil
Artikelnummer	221100000	221100007
Nennspannung [V]	200-240	200–240
Frequenz [Hz]	50	50
Leistungsaufnahme [W]	3,5–5	3,5–5
Maximaler Anlagendruck [bar]	32	32
Medientemperatur [°C]	+ 90	+ 90
Laufzeit [s]	40	40
Drehmoment (Nm)	10	10
Anschlüsse [DN]	20	25

Tab. 15: Technische Daten Ventile

SOLARPUFFERSTATION

Die Solarpufferstation dient zur Anbindung einer Solarkollektoranlage bis 25m² an einen Puffferspeicher. Über den Wärmetauscher wird die solare Wärme vom Kollektorkreislauf in den Pufferkreislauf übertragen. Dabei sorgt ein intelligentes Steuerungssystem, je nach Sonneneinstrahlung, für das optimale Zusammenspiel der Solar- und Pufferladepumpe und garantiert somit eine hohe Wärmeübertragungsleistung.

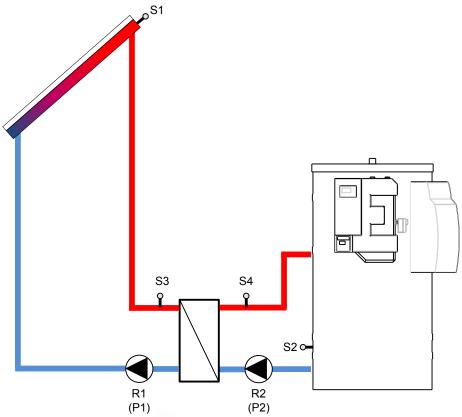


Abb. 63: Anschlussschema Solaranbindung

ÜBERGABESTATIONEN MIT WÄRMEMENGENZÄHLER

ANWENDUNG

Falls kein Platz vorhanden ist, oder aufgrund anderer Gegebenheiten kein Nahwärmepufferspeichersystem verbaut werden kann, ist die Installation einer Übergabestation möglich. Es muss darauf geachtet werden, dass die Rohrdimensionierung (des Wärmenetzes für die nur mit einer Übergabestation ausgerüsteten Gebäude) größer ausfallen kann.

ÜBERGABESTATION EPC INKL. ULTRASCHALL WÄRMEMENGENZÄHLER

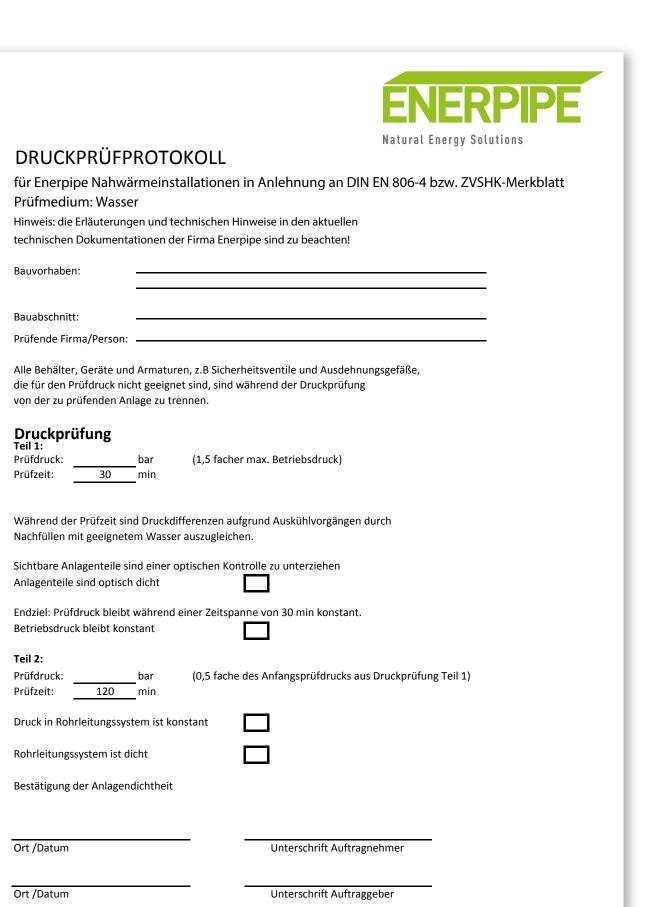
	Тур 15	Тур 25	Typ 40	Тур 60	Тур 80
Artikelnummer	100501017	100501027	100501047	100501067	100501087
Heizleistung* (KW)	15	25	40	60	80
Volumenstrom Primär* (m³/h)	0,66	1,1	1,76	2,64	3,45
Max. Volumenstrom Primär (m³/h)	0,88	1,6	2,4	4,5	4,5
Wärmemengenzähler Qp	1,5	1,5	1,5	2,5	2,5
Baulänge WMZ (mm)	110	110	110	130	130
Nennweite WMZ (DN)	15	15	15	20	20
kvs-Wert Druckregler	1,6	2,5	4,0	8,0	8,0
Druckverlust Primar (bar)	0,49	0,58	0,67	0,69	0,58
Volumenstrom Sekundär* (m³/h)	0,88	1,47	2,35	3,52	4,6
Max. Volumenstrom Sekundär (m³/h)	3,1	3,1	3,1	7,0	7,0
Druckverlust Sekundär (bar)	0,2	0,21	0,26	0,29	0,22
Nennweite Primär/Sekundär (DN)	25/25	25/25	25/25	32/40	32/40
Höhe (mm)	660	660	660	810	810
Breite (mm)	592	592	592	750	750
Tiefe (mm)	275	275	275	290	290
Gewicht (kg)	34	35	38	48	49

Abb. 65: Übergabestation bis 80 KW

GROSSSTATIONEN INKL. ULTRASCHALL WÄRMEMENGENZÄHLER

	Typ 100	Тур 200	Тур 300	Тур 400	Тур 500
Artikelnummer	100502101	100501201	100501301	100501401	100501501
Heizleistung* (KW)	100	200	300	400	500
Volumenstrom Primär* (m³/h)	4,3	8,6	12,9	17,2	21,5
Wärmemengenzähler Qp	3,5-6	10	15	15	25
kvs-Wert Druckregler	10	32	50	50	50
Volumenstrom Sekundär* (m³/h)	5,7	11,5	17,2	22,9	28,6
Nennweite Primär/Sekundär (DN)	32/50	50/65	60/65	65/65	65/80
Höhe (mm)	1700	1750	1800	1800	1800
Breite (mm)	1500	1700	1800	1850	1900
Tiefe (mm)	500	550	600	600	630
Gewicht (kg)	74	125	210	275	300

Tab. 17: Technische Daten Großstation


*Grundlage zur Berechnung der Heizleistung: Wärmenetz 80°/60°; Gebäude 55°/70° Die Maße, Ausstattung und Gewichte der Großstationen sind Anhaltswerte!

Tab. 16: Technische Daten Übergabestation

^{*}Grundlage zur Berechnung der Heizleistung: Wärmenetz 80°/60°; Gebäude 55°/70°

DRUCKPRÜFPROTOKOLL

DRUCK- UND DICHTIGKEIT

NAHWÄRMEPUFFERSPEICHER UND ÜBERGABESTATIONEN

DRUCK- UND DICHTIGKEITSPRÜFUNG

Grundlagen zur Druckprüfung

Nach DIN EN 806-4 und DIN 1988 muss an den fertiggestellten Rohren vor der Inbetriebnahme eine Druckprüfung durchgeführt werden.

Aussagen über die Anlagendichtigkeit anhand des auftretenden Prüfdruckverlaufs (konstant, fallend, steigend) können nur bedingt getroffen werden.

Die Dichtigkeit der Anlage kann nur durch eine Sichtkontrolle an unverdeckten Leitungen überprüft werden.

Feinstleckagen können nur mit einer Sichtkontrolle (Wasseraustritt) bei hohem Druck geortet werden.

ERHEBUNGSBOGEN

HAUSANSCHLUSS

Erhebungsbogen Hausanschluss zur Planung eines Wärmenetzes

Natural Energy Solutions 1. Zu- und Vorname 2. Straße, Hausnummer, Ort 3. Telefon, E-Mail ☐ Einfamilienhaus frei ☐ Doppelhaushälfte ☐ Reihenmittelhaus 4. Gebäudedaten ☐ Mehrfamilienhaus mit_____WE ☐ ____ Baujahr _____ Erweiterung _____ Wohnfläche_____m² davon tatsächlich beheizt, ca._____% ☐ Heizkörper ☐ Fußbodenheizung / Wandheizung ☐ Lufterhitzer □ Elektroheizung □ Anzahl Bewohner _____ Anzahl Bäder _____ Zusatz-Bemerkung: z.B.: Dämmstandard, Erweiterungspläne, sonstiger Wärmebedarf (Pool, Garage, ...) Leistung Baujahr Brennwert (Ja/Nein) | Brennstoff pro Jahr* Тур Ölheizung Scheitholzheizung kW Ster kW kW Kaminofen (Holz) kW Ster kW *Im Durchschnitt der letzten 3 bis 5 Jahre. Zusatz bei Holzheizung: Anteil Hartholz______%, Weichholz__ 5. Solaranlage 6. Warmwasserspeicher (Boiler) Volumen: _____Liter Baujahr: _____ Anzahl: Stück Gesamtvol.: ____Liter Baujahr: _____ 7. Heizungspufferspeicher ☐ Es besteht keine Austauschpflicht nach §72 des Gebäudeenergiegesetz – GEG) Bestätigung der Daten durch den/die Wärmeabnehmer/in: Mit der Bestätigung der Daten entstehen keinerlei vertragliche Verpflichtungen für den Wärmeabnehmer. Wir sichern Ihnen zu, Ihre Daten ausschließlich zweckgebunden für die Planung Ihres Projektes zu verwenden. ☐ Ich willige ein, dass die Firma ENERPIPE GmbH meine Adressdaten zum Zwecke der Auftragsbearbeitung verwendet 🔲 Ich willige ein, dass die Firma ENERPIPE GmbH meine Adressdaten zum Zwecke der Werbung und Information über Neuerungen verwendet Gemeinsam bringen wir Wärme auf den Weg.

Gesetz zur Einsparung von Energie und zur Nutzung erneuerbarer Energien zur Wärme- und Kälteerzeugung in Gebäuden (Gebäudeenergiegesetz - GEG)

§ 72 Betriebsverbot für Heizkessel, Ölheizungen

- (1) Eigentümer von Gebäuden dürfen ihre Heizkessel, die mit einem flüssigen oder gasförmigen Brennstoff beschickt werden und vor dem 1. Januar 1991 eingebaut oder aufgestellt worden sind, nicht mehr betreiben.
- (2) Eigentümer von Gebäuden dürfen ihre Heizkessel, die mit einem flüssigen oder gasförmigen Brennstoff beschickt werden und ab dem 1. Januar 1991 eingebaut oder aufgestellt worden sind, nach Ablauf von 30 Jahren nach Einbau oder Aufstellung nicht mehr betreiben.
- (3) Die Absätze 1 und 2 sind nicht anzuwenden auf:
 - a. Niedertemperatur-Heizkessel und Brennwertkessel sowie
 - b. heizungstechnische Anlagen, deren Nennleistung weniger als 4 Kilowatt oder mehr als 400 Kilowatt beträgt.

§ 73 Ausnahme

- (1) Bei einem Wohngebäude mit nicht mehr als zwei Wohnungen, von denen der Eigentümer eine Wohnung am 1. Februar 2002 selbst bewohnt hat, sind die Pflichten nach § 71 und § 72 Absatz 1 und 2 erst im Falle eines Eigentümerwechsels nach dem 1. Februar 2002 von dem neuen Eigentümer zu erfüllen.
- (2) Die Frist zur Pflichterfüllung beträgt zwei Jahre ab dem ersten Eigentumsübergang nach dem 1. Februar 2002.

INBETRIEBNAHMEPROTOKOLL

Inbetriebnahme Protokoll

	Nahwärmene	tz		
Abnehmer-/- Abnehmernur	mmer:			
Heizungsbauer:				
Heizleistung:		k١	W	
Dimension/Länge Anschluss	sleitung:	/	m	
Volumenstrom soll:		I/	/h	
Volumenstrom ist:		I/	/h	
Regleradresse nur bei Kupfe	erkabel:			
MAC-Adresse nur bei Glasfa	aserkabel:			
Fabrikationsnr. Übergabete	chnik:			
Wärmemengenzählernumn	ner:			
Stand Wärmemengenzähle	r:	kW	/h	
Druckprüfung durchgeführ Leitungen primär isoliert Vor- und Rücklauf richtig al Sieb primär gereinigt Anlage mit Strom versorgt Kommunikation angeschlos Verplombung WMZ Verplombung Volumenstro Baudrate (4800 Baud) eing	ngeschlossen ssen omregler	Ja	Nein	
Bemerkungen:				
Die Anlage wurde am	fu	nktionsfähig in Betrieb ger	nommen.	
Unterschrift Monteur			Unterschrift Kunde	
PIPE GmbH Geschäftsführer Autobahn M1 Martin Böckler, Lu Hilpoltstein Amtsgericht Nürnl		Bankverbindung Stadtsparkasse Nürnberg KtoNr. 6024665	Tel.: +49 9174 FAX: +49 9174 info@enerpipe	1 976507-11

Unsere Angebote, Lieferungen und Leistungen erfolgen auf Basis unserer allgemeinen Geschäftsbedingungen

ENER An der 91161

NORMEN UND RICHTLINIEN

Bei der Planung, dem Einbau und dem Betrieb von Pufferspeichersystemen sind neben den Hinweisen dieser Technischen Information noch eine Reihe von geltenden nationalen und internationalen Gesetzen und Vorschriften zu beachten. Hierbei handelt es sich um deutsche (DIN), europäische (EN) oder internationale (ISO) Normen, sowie um Vorschriften und Richtlinien verschiedener Verbände wie z. B. DVGW, AGFW, VDE, VDI u. ä. Des Weiteren sind die einschlägigen Bestimmungen der Berufsgenossenschaften und die Vorschriften der örtlichen Versorgungsunternehmen zu berücksichtigen.

Um Ihnen einen kleinen Überblick zu verschaffen, haben wir für Sie wichtige Vorschriften aufgeführt.

Die Aufstellung zählt die wichtigsten Vorschriften auf, erhebt jedoch keinen Anspruch auf Vollzähligkeit.

Bitte bedenken Sie, dass die von Ihnen herangezogenen Normen, Vorschriften und Richtlinien immer den aktuellsten Stand aufweisen.

Angewandte harmonisierte Normen:

- EN ISO 14121-1
- EN 60204-1
- EN 64000-6-1
- EN 64000-6-3
- EN 64000-6-4
- EN 64000-3-2
- EN 64000-3-3
- ISO 12100-1,-2
- EN287-1

Angewandte Normen und technische Spezifikationen:

- DIN 1988
- DIN 4708
- DIN 4747-01
- DIN 4753
- DIN 4757
- EN ISO 3834-2/3
- DGVO
- DIN EN 12828
- DIN 12975
- AD2000HP0
- AGFW FW 527
- ÖNORM M 7812
- ÖNORM H5 195
- VDE 0100-Teil 6-61
- VDE 0185
- VDE 0190
- DIN 18380
- DIN 18381
- DIN 18382
- DIN EN ISO 5817:2003+AC:2006
- DIN EN ISO 9692-1
- DIN EN ISO 6520-1

RECHTLICHE HINWEISE UND SICH

Rechtliche Hinweise

Technischen Information

Die vorliegende Technische Information "Pufferspeichersysteme von ENERPIPE" ist ab April 2020 gültig und gilt für Deutschland. Wir weisen darauf hin, dass die Unterlage urheberrechtlich geschützt ist und wir uns alle Rechte vorbehalten.

Die in der Technischen Information enthaltenen Maße und Gewichte sind Richtwerte. Irrtümer und Änderungen vorbehalten.

Zu Ihrer Sicherheit und zur Sicherstellung der korrekten Anwendung unserer Produkte sollten Sie in regelmäßigen Abständen prüfen, ob sich die Ihnen vorliegende Technische Information auf dem neuesten Stand befindet.

Das Ausgabedatum der Technischen Information ist immer rechts unten auf der Titelseite aufgedruckt. Die derzeit aktuelle Technische Information und weitere technische Unterlagen erhalten Sie auf Anforderung direkt bei ENERPIPE sowie im Internet als Download unter www.enerpipe.de.

Wir weisen darauf hin, dass Einsatzgebiete, die in dieser Technischen Information nicht erfasst werden (sogenannte Sonderanwendungen), es erforderlich machen, dass eine Rücksprache mit der anwendungstechnischen Abteilung von ENERPIPE erfolgen muss.

Normen, Vorschriften und Gesetze

Generell sind bei der Montage und Installation von Rohrleitungsanlagen alle für diesen Bereich geltenden nationalen und internationalen Verlege-, Installations-, Unfallverhütungs- und Sicherheits-vorschriften sowie die Hinweise dieser Technischen Information zu beachten.

Weiterhin sind die geltenden Gesetze, Normen, Richtlinien und Vorschriften der verschiedenen Institute und Einrichtungen (z. B. DIN, EN, ISO, DVGW, AGFW, VDE und VDI u. ä.) zu berücksichtigen. Dies gilt auch für entsprechende Vorschriften zum Umweltschutz, Bestimmungen der Berufsgenossenschaften und Vorschriften der regionalen und örtlichen Versorgungsunternehmen. Vergewissern Sie sich, dass es sich immer um den jeweils gültigen Stand der Gesetze, Normen, Richtlinien und Vorschriften handelt.

Die Planungs- und Montagehinweise sind unmittelbar mit dem jeweiligen Produkt von ENERPIPE verbunden. In diesen Unterlagen wird nur auszugsweise auf entsprechende allgemein gültige Normen oder Vorschriften verwiesen.

Weitergehende Normen, Vorschriften und Richtlinien, die die Planung, die Installation und den Betrieb von Trinkwasser- oder Heizungsanlagen sowie gebäudetechnischen Anlagen betreffen, müssen ebenfalls mit einbezogen werden. Sie sind aber nicht Bestandteil dieser Technischen Information.

Bestimmungsgemäßer Gebrauch

Die Planung, Installation und der Betrieb der ENERPIPE Nahwärmepufferspeicher darf nur wie in dieser Technischen Information und wie in den zu den einzelnen Komponenten zugehörigen Montageanleitungen beschrieben durchgeführt werden. Jeder davon abweichende andere Gebrauch ist nicht bestimmungsgemäß und deshalb unzulässig. Wenden Sie sich im Zweifelsfall für eine ausführliche Beratung direkt an ENERPIPE.

Das Beachten aller Hinweise dieser Technischen Information sowie die der zugehörigen Montage-, Bedienungs- und Wartungsanleitungen gehört ebenfalls zum bestimmungsgemäßen Gebrauch. Es wird keine Haftung für die nicht bestimmungsgemäße Verwendung oder die unzulässige Änderung am Produkt sowie sämtliche sich daraus ergebende Folgen übernommen.

Sicherheitsinformationen

Allgemein

- Oberstes Gebot ist ein sauberer Arbeitsplatz an dem sich keine unnötig umherliegenden und behindernden Gegenstände befinden.
- Am Arbeitsplatz eine ausreichende Beleuchtung sicherstellen.
- Stellen Sie durch geeignete Maßnahmen sicher, dass unbefugte Personen keinen Zugang zu Werkzeugen und den Montageplätzen haben. Dies ist ganz besonders wichtig bei Arbeiten im bewohnten Bereich.
- · Geeignete Arbeitskleidung tragen.
- Persönliche Schutzausrüstung wie Sicherheitsschuhe, Schutzhelm und Schutzbrille tragen.
- Beim Tragen von zu weiter Arbeitskleidung oder Schmuck besteht die Gefahr von beweglichen Teilen erfasst zu werden.
- Die einzelnen Komponenten des jeweiligen ENERPIPE-Systems sind optimal aufeinander abgestimmt. Beim Einsatz systemfremder Komponenten kann es zu Unfällen oder anderen Gefährdungen kommen. Das Gleiche gilt auch für den Einsatz von Werkzeugen, die nicht zu dem jeweiligen ENERPIPE-Installationssystem gehören.

IERHEITSINFORMATIONEN

Personal

- Ziehen Sie nur autorisierte und geschulte Firmen bzw. Personen für die Montage unserer Systeme heran.
- Treten im Zuge der Montagearbeiten Arbeiten an elektrischen Anlagen oder Leitungsteilen auf, so dürfen diese nur von hierfür ausgebildetem und autorisiertem Fachpersonal ausgeführt werden.

Bedienungsanleitungen und Montagevorschriften

- Vor Beginn der Montage müssen Sie alle entsprechenden Bedienungsanleitungen und Montagevorschriften mit den jeweiligen Sicherheitsinformationen vollständig und aufmerksam durchlesen.
 Damit tragen Sie wesentlich zur eigenen Sicherheit und der anderer Personen bei.
- Damit Unklarheiten während der Montage abgeklärt werden können, sollten Sie die Bedienungsanleitungen aufbewahren und entsprechend am Montageort zum Nachschlagen bereithalten.
- Bei Unklarheiten bezüglich der Montagevorschriften oder Sicherheitsinformationen wenden Sie sich bitte direkt an die anwendungstechnische Abteilung von ENERPIPE.
- Wir weisen darauf hin, dass aus der Nichtbeachtung der in den Bedienungsanleitungen und Montagevorschriften enthaltenen Sicherheitsinformationen Sach- oder Personenschäden resultieren können.

Montage

Zum richtigen Einsatz des ENERPIPE-Montagewerkzeugs immer vorab die zugehörige Bedienungsanleitung durchlesen und beachten. Die unsachgemäße Handhabung und Einsatz von Werkzeugen, wie der Transport, kann auf der einen Seite zu persönlichen Schäden führen, wie z. B. schwere Schnittverletzungen, Quetschungen oder Abtrennung von Gliedmaßen. Auf der anderen Seite können dadurch aber auch Verbindungskomponenten beschädigt oder Undichtigkeiten herbeigeführt werden.

Betriebsparameter

- Die in der Technischen Information genannten Betriebsparameter sind unbedingt einzuhalten. Beim Überschreiten der Betriebsparameter kommt es zu einer unzulässigen Überbeanspruchung der Rohre und Verbindungen.
- Durch den Einsatz von entsprechenden Sicherheits- und Regeleinrichtungen (z. B. Druckminderer, Sicherheitsventile u. ä.) ist das Einhalten der Betriebsparameter sicherzustellen.

Besuchen Sie unsere Webseite für weitere Informationen.

www.enerpipe.de

MEHR LEISTUNG FÜR WÄRMENETZE

Höherer Druck – weniger Wärmeverluste – längere Lebensdauer!

ENERPIPE GmbH | An der Autobahn M1 | 91161 Hilpoltstein e: info@enerpipe.de t: +49 9174 97 65 07-0 f: +49 9174 97 65 07-11

